
Global Heterogeneous Graph and Target Interest Denoising for
Multi-behavior Sequential Recommendation

Xuewei Li
College of Intelligence and

Computing, Tianjin University
Tianjin, China

lixuewei@tju.edu.cn

Hongwei Chen
College of Intelligence and

Computing, Tianjin University
Tianjin, China
chw@tju.edu.cn

Jian Yu
College of Intelligence and

Computing, Tianjin University
Tianjin, China

yujian@tju.edu.cn

Mankun Zhao
College of Intelligence and

Computing, Tianjin University
Tianjin, China
zmk@tju.edu.cn

Tianyi Xu
College of Intelligence and

Computing, Tianjin University
Tianjin, China

tianyi.xu@tju.edu.cn

Wenbin Zhang
Information and Network Center,

Tianjin University
Tianjin, China

zhangwenbin@tju.edu.cn

Mei Yu∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

yumei@tju.edu.cn

ABSTRACT
Multi-behavior sequential recommendation (MBSR) predicts a user’s
next item of interest based on their interaction history across dif-
ferent behavior types. Although existing studies have proposed
capturing the correlation between different types of behavior, two
important challenges have not been explored: i) Dealing with het-
erogeneous item transitions (both global and local perspectives). ii)
Mitigating the issue of noise that arises from the incorporation of
auxiliary behaviors. To address these issues, we propose a novel so-
lution,GlobalHeterogeneous Graph and Target InterestDenoising
for Multi-behavior Sequential Recommendation (GHTID). In par-
ticular, we view the transitions between behavior types of items
as different relationships and propose two heterogeneous graphs.
By considering the relationship between items under different be-
havioral types of transformations, we propose two heterogeneous
graph convolution modules and explicitly learn heterogeneous item
transitions. Moreover, we utilize two attention networks to inte-
grate long-term and short-term interests associated with the target
behavior to alleviate the noisy interference of auxiliary behaviors.
Extensive experiments on four real-world datasets demonstrate
that our method outperforms other state-of-the-art methods.
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1 INTRODUCTION
As information technology advances, the problem of information
overload becomes increasingly severe. To mitigate this issue, rec-
ommendation systems have been widely developed. Among them,
sequential recommendation systems (SRS) have received consider-
able attention, as it predicts the next item of interest by learning the
sequential features of a user’s historical items. Current research on
SRS mainly focuses on contrastive learning[27], item attributes[28],
and multiple interests[22], among others, to further improve the
recommendation effect.

Despite the validity of the current approaches, most research
has only focused on a single type of interaction and overlooked
the naturally occurring multi-behavioral interactions. In practical
recommendation scenarios, different behaviors exist between users
and items. For example, on shopping websites, there are various
behaviors between users and items, such as Page View (PV) and
Purchase (Pur), as illustrated in Figure1. Pur, as the target behavior,
reflects the user’s actual interest, while PV, as an auxiliary behavior,
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Figure 1: Illustration of heterogeneous item transitions, in-
cluding intra-type transition and cross-type transition.

can provide additional information to help predict the target behav-
ior. Therefore, when incorporating multiple types of behavior into
a sequential model, there are two main challenges to consider.
• Dealing with heterogeneous item transitions. There may be
complex transitions between items of different behaviors. For
example, a user views (Page View, PV) and purchases (Pur) some
items, we can categorize the item sequence into sub-sequences
by behavior type. The items in different sub-sequences have dif-
ferent relationships, such as from PV to PV, from Pur to Pur.
In addition, there are also cross-behavior type relationships be-
tween two items in the user’s item sequence, such as from PV to
Pur, from Pur to PV. We define this relationship as heterogeneous
item transitions, including item transitions between the same
type of behavior (intro-type transition) and item transitions be-
tween different types (cross-type transition), as shown in Figure
1. These transitions reveal a user’s individual behavior patterns
and preferences, as well as the broader association rules of items
across behaviors. However, most existing methods either do not
explicitly model heterogeneous item transitions or ignore infor-
mation from global users, and thus cannot learn heterogeneous
item transitions.

• Interference of auxiliary behaviors. Before performing the
target behavior (Pur), users may engage in a large number of
auxiliary behaviors (PV) that may contain information that is
irrelevant or even contrary to their final interests. For example,
users may browse many items but only be interested in a few.
Therefore, extracting specific interests for the target behavior
from the auxiliary behaviors and filtering out the noise informa-
tion in the auxiliary behaviors is another critical challenge.
To overcome the above challenges, we propose a new solution

namedGlobalHeterogeneous Graph and Target InterestDenoising
for Multi-behavior Sequential Recommendation, termed asGHTID.
We introduced a global item-item co-occurrence graph to explore
item correlations under different behavior types and designed a
global graph convolutional layer with attention mechanisms for
behavior pair-specific aggregation and relationship perception. We
also constructed a local item-item transition graph for each user to
distinguish user-specific behavior patterns and interest preferences,
and designed local convolutional layers with attention mechanisms
for behavior transitions perception. These graph neural networks
learn heterogeneous item transitions from global and local perspec-
tives to generate global and personalized project representations.

To reduce the interference of auxiliary behavior on the target be-
havior, we designed an interest aggregation module that utilizes a
soft attention mechanism to learn the representations of short-term
and long-term interests under the target behavior.

Overall, our main contributions are summarized as follows:
• We have customized a global item-item co-occurrence graph,
local item-item transition graphs, and corresponding graph con-
volutional networks based on the proposed heterogeneous item
transitions.

• We have proposed interest aggregation module, which effectively
reduces the interference of auxiliary behaviors on the prediction
of target behaviors, and further experiment demonstrates the
effectiveness of this module in section 4.4.

• We conducted extensive experiments on four real datasets, demon-
strating that our proposed GHTID is better than the latest multi-
behavior sequential recommendation method.

2 PRELIMINARIES
In this section, we first presented the problem formulation proposed
for this study. Then, we introduced two graph models proposed
to learn the behavior dependency at the item level: global item-
item co-occurrence graph and local item-item transition graphs,
respectively.

2.1 Problem Formulation
InMBSR scenario, we have a set of |U| usersU = {𝑢1, ..., 𝑢𝑖 , ..., 𝑢 |U | }
and a set of |V| items V = {𝑣1, ..., 𝑣 𝑗 , ..., 𝑣 |V | }. We further de-
fine B to represent |B| types of different interaction behaviors
B = {𝑏1, ..., 𝑏𝑘 , ..., 𝑏 | B | }, such as page view, add to favorite, add
to cart and purchase. For each user 𝑢𝑖 ∈ U, we use a list 𝑆𝑖 =

[(𝑣𝑖,1, 𝑏𝑖,1), (𝑣𝑖,2, 𝑏𝑖,2), ..., (𝑣𝑖,𝑛, 𝑏𝑖,𝑛)] to denote his interacted sequence,
where 𝑣𝑖, 𝑗 ∈ V , 𝑏𝑖, 𝑗 ∈ B are the 𝑗-th interacted item, behavior of
user 𝑢𝑖 , and 𝑛 is the preset maximum length of the sequence. We
divide the behavior set B into a target behavior and multiple auxil-
iary behaviors. Specifically, We define the most valuable behavior
as the target behavior (e.g., purchasing in online retail e-commerce
platforms, downloading in application stores). The task of our study
can be expressed as:
Input: The multi-behavior interaction sequence of each user 𝑢𝑖 ∈
U, 𝑆𝑖 = [(𝑣𝑖,1, 𝑏𝑖,1), (𝑣𝑖,2, 𝑏𝑖,2), ..., (𝑣𝑖,𝑛, 𝑏𝑖,𝑛)].
Output:The probability that𝑢𝑖 interacts with an item 𝑣 𝑗 ∈ V under
the target behavior at time step 𝑛 + 1.

2.2 Global Item-Item Co-occurrence Graph
To model the co-occurrence relationships between items under
different behaviors from a global perspective, we define a global
item-item co-occurrence graph G𝑔 = {V𝑔, E𝑔}.

The graph contains all item nodes, i.e., V𝑔 = V . Let R𝑔 = {𝑥 →
𝑦 |𝑥,𝑦 ∈ B} denote multiple relationships for the global graph, and
each relationship 𝑟 ∈ R𝑔 reflects the correlation between items
under different behaviors. Formally, the edge set is represented
as E𝑔 = {(𝑣𝑖 , 𝑣 𝑗 , 𝑟 ,𝑤𝑟

𝑖 𝑗
) |𝑣𝑖 , 𝑣 𝑗 ∈ V, 𝑟 ∈ R𝑔,𝑤

𝑟
𝑖 𝑗

∈ R}, Where 𝑣𝑖

denotes the source node, 𝑣 𝑗 denotes the target node, 𝑟 represents
the transition type between the two items, and𝑤𝑟

𝑖 𝑗
represents the

co-occurrence coefficient of the two item nodes 𝑣𝑖 and 𝑣 𝑗 on the
relationship 𝑟 . We propose improving point-wise mutual informa-
tion (PMI)[30] to measure the co-occurrence coefficient between
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items under different relationships. The PMI of item nodes 𝑣𝑖 and
𝑣 𝑗 under the relationship 𝑥 → 𝑦 is defined as follows:

PMI(𝑣𝑖 , 𝑣 𝑗 , 𝑥 → 𝑦) = log
p(𝑣𝑖 , 𝑣 𝑗 , 𝑥 → 𝑦)
p(𝑣𝑖 , 𝑥)p(𝑣 𝑗 , 𝑦)

p(𝑣𝑖 , 𝑣 𝑗 , 𝑥 → 𝑦) =
|S(𝑣𝑖 , 𝑣 𝑗 , 𝑥 → 𝑦) |

|S|

p(𝑣𝑖 , 𝑥) =
|S(𝑣𝑖 , 𝑥) |

|S|

(1)

where S is the set of all item sequences, S(𝑣𝑖 , 𝑥) is the set
of item sequences containing item 𝑣𝑖 with behavior type 𝑥 , and
S(𝑣𝑖 , 𝑣 𝑗 , 𝑥 → 𝑦) is the set of item sequences containing both item
𝑣𝑖 with behavior type 𝑥 and item 𝑣 𝑗 with behavior type 𝑦. The
co-occurrence coefficient of 𝑣𝑖 and 𝑣 𝑗 under the relationship 𝑥 → 𝑦

is𝑤𝑥→𝑦

𝑖 𝑗
= PMI(𝑣𝑖 , 𝑣 𝑗 , 𝑥 → 𝑦). We only retain edges with positive

PMI, as negative PMI values indicate a weak correlation between
the two items, i.e.,𝑤𝑟

𝑖 𝑗
> 0. In order to control the complexity, we

divide the item sequence into multiple sliding windows of the same
size 20 for each user.
2.3 Local Item-Item Transition Graph
The graph model can flexibly represent the relationship between
any two items in an item sequence. Specifically, given an interaction
sequence 𝑆 , we transform it into a graph G𝑠 = {V𝑠 , E𝑠 }. V𝑠 ⊂ V
denotes an item set appearing in the interaction sequence 𝑆 . In the
local item-item transition graph, we further consider the orders
between item pairs and define the set of relationships as R𝑠 = {𝑥 𝑧→
𝑦 |𝑥,𝑦 ∈ B, 𝑧 ∈ {+,−}}. For example, when the relationship between
item 𝑣𝑖 and item 𝑣 𝑗 is 𝑥

+→ 𝑦, it indicates that the behavior type
of item 𝑣𝑖 is 𝑥 , the behavior type of 𝑣 𝑗 is 𝑦, and ’+’ represents that
the user first interacts with item 𝑣𝑖 , and then interacts with item 𝑣 𝑗 .
We define the set of edges as E𝑠 = {(𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) |𝑣𝑖 , 𝑣 𝑗 ∈ V𝑠 , 𝑟 ∈ R𝑠 },
where 𝑣𝑖 and 𝑣 𝑗 are the source and target nodes, respectively, 𝑠 is
the relationship between the two nodes.

3 METHODOLOGY
This section proposes theGHTIDmodel, which captures the hetero-
geneous item transitions and reduces the interference of auxiliary
behavior. The overall framework of the model is shown in Figure 2.
GHTID consists of three main modules: (1) Global Graph Convolu-
tion Module, which includes item-to-relationship and relationship-
to-item information propagation stages, for encoding item repre-
sentations. (2) Local Graph Convolution Module, which includes a
behavior-aware attention mechanism for encoding local item rep-
resentations (3) The Interest Aggregation Module includes target
short-term interest aggregation, target long-term interest aggrega-
tion, and interest fusion for extracting the final representation of
user interest.

3.1 Global Graph Convolution Module
The global graph convolution module is divided into two messaging
processes, item-to-relationship and relationship-to-item. We define
𝑝𝑙𝑣𝑖 as the representation of item 𝑣𝑖 after propagation at layer 𝑙 , and
we initialize the node features of the graph neural network with
the embeddings of the items, i.e., 𝑝0𝑣𝑖 = 𝑒𝑣𝑖 .

3.1.1 Item-To-Relationship. Following the message propagation
paradigm[3], firstly, for different edge types, we construct different
messages, and the formula for constructing messages is defined as
2:

𝑚
(𝑙 )
𝑣𝑖 ,𝑟 =

1
| ∑
𝑣𝑗 ∈N

G𝑔
𝑟 (𝑣𝑖 )

𝑤𝑟
𝑖 𝑗
|

∑︁
𝑣𝑗 ∈N

G𝑔
𝑟 (𝑣𝑖 )

𝑤𝑟
𝑖 𝑗𝑝

(𝑙−1)
𝑣𝑗 (2)

where𝑚 (𝑙 )
𝑣𝑖 ,𝑟 denotes the message aggregated by node 𝑣𝑖 under edge

type 𝑟 at layer 𝑙 ,NG𝑔

𝑟 denotes the in-neighbors of node 𝑣𝑖 with edge
type 𝑟 in the global G𝑔 . We have constructed multiple relationship-
specific messages for each node through the item-to-relationship
messaging process.
3.1.2 Relationship-To-Item. In order to aggregate messages from
different edge types, we first use an attention mechanism to obtain
the weight coefficients from each edge type and then use a weighted
sum method to obtain the representation of the item nodes in the
next layer. The formula for relationship-to-item is defined as 3:

𝜋 (𝑣𝑖 , 𝑟 ) = 𝑎𝑇 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑟 $ [𝑝 (𝑙−1)𝑣𝑖 | |𝑚 (𝑙 )
𝑣𝑖 ,𝑟 ])

𝛼𝑣𝑖 ,𝑟 =
𝑒𝑥𝑝 (𝜋 (𝑣𝑖 , 𝑟 ))∑

𝑘∈R𝑔

𝑒𝑥𝑝 (𝜋 (𝑣𝑖 , 𝑘))

𝑝
(𝑙 )
𝑣𝑖 =

∑︁
𝑘∈R𝑔

𝛼𝑣𝑖 ,𝑘𝑚
(𝑙 )
𝑣𝑖 ,𝑘

(3)

where W𝑟 ∈ R2𝑑×𝑑 is the edge type-specific weight matrix, $
represents matrix multiplication, || denotes concatenation operation,
𝛼𝑣𝑖 ,𝑟 ∈ R represents attention weight, 𝜋 (𝑣𝑖 , 𝑟 ) ∈ R represents the
attention coefficient of node 𝑣𝑖 and relationship 𝑟 ∈ R𝑔 . Finally, the
representation 𝑝

(𝑙 )
𝑣𝑖 of 𝑙-th graph layer for item 𝑣𝑖 is obtained by

weighting and summing all types of messages.
The item representation under the global co-occurrence graph is

obtained by adding the item representations under the convolution

of the 𝐿-layer graph, i.e., ℎG𝑔

𝑣𝑖 =
𝐿∑
𝑙=0

𝑝
(𝑙−1)
𝑣𝑖 .

3.2 Local Graph Convolution Module
In this section, we propose a local graph convolution module on the
local transition graph , which injects user-specific item transition
patterns into item representation learning by performing graph
convolution operations. Similarly, we define 𝑞𝑙𝑣𝑖 as the representa-
tion of item 𝑣𝑖 after propagation in the local graph at layer 𝑙 and
then initialize the 0-th layer of the graph neural network with item
embedding, i.e., 𝑞0𝑣𝑖 = 𝑒𝑣𝑖 . To distinguish the importance of different
neighbors, we adopt the attention mechanism, as shown in formula
4:

𝑞
(𝑙 )
𝑣𝑖 = 𝑞

(𝑙−1)
𝑣𝑖 +

∑︁
𝑣𝑗 ∈NG𝑠

𝑣𝑖

attn(𝑣𝑖 , 𝑣 𝑗 )𝑞 (𝑙−1)𝑣𝑗 (4)

where NG𝑠
𝑟 denotes the in-neighbors of node 𝑣𝑖 with edge type

𝑟 ∈ R𝑠 , attn(𝑣𝑖 , 𝑣 𝑗 ) denotes the attention weight between item
𝑣𝑖 and 𝑣 𝑗 . For each item, the importance of its neighbors depends
on two factors, semantic similarity and behavior type. Therefore,
we propose a new attention mechanism, behavior-aware attention
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Figure 2: The overall framework of our proposed GHTID.

mechanism.
Behavior-aware attention attention captures the similarity be-

tween items of different behaviors to obtain the attention coeffi-
cients of different neighboring items. There are different relation-
ships between items for different behaviors. We use different ways
of calculating semantic similarity between items for different be-
havior pairs. The behavior-aware attention coefficients between
different items are calculated as formula 5:

𝜋 (𝑣𝑖 , 𝑣 𝑗 ) = 𝑎𝑇𝑟𝑖 𝑗 LeakeyReLU( [W1𝑞
𝑙−1
𝑣𝑖

| |W2𝑞
𝑙−1
𝑣𝑗

])

attn(𝑣𝑖 , 𝑣 𝑗 ) =
𝑒𝑥𝑝 (𝜋 (𝑣𝑖 , 𝑣 𝑗 ))∑

𝑣𝑘 ∈NG𝑠
𝑣𝑖

𝑒𝑥𝑝 (𝜋 (𝑣𝑖 , 𝑣𝑘 ))
(5)

whereW1,W2 ∈ R𝑑×𝑑 are the projection matrices of the source
and target nodes, 𝑟𝑖 𝑗 ∈ R𝑠 denotes the relationship between nodes
𝑣𝑖 and 𝑣 𝑗 , 𝑎𝑟𝑖 𝑗 ∈ R2𝑑 is a relation-specific weight vector, and
𝜋 (𝑣𝑖 , 𝑣 𝑗 ) is the attention coefficients of nodes 𝑣𝑖 and 𝑣 𝑗 . Then we
use the softmax function to normalize the attention coefficients of
neighbours connecting node 𝑣𝑖 to obtain the attention weight of
neighbour 𝑣 𝑗 . The final representation of an item in the on the local
transition graph is the item representation of the last layer of the
graph network, i.e., ℎG𝑠

𝑣𝑖 = 𝑞
(𝐿)
𝑣𝑖 .

3.3 Interest Aggregation Module
This module consists of three small modules, target short-term
interest aggregation, target long-term interest aggregation, and in-
terest fusion. Before performing interest aggregation, each item 𝑣𝑖

obtains a global level representation ℎG𝑔

𝑣𝑖 and a local level represen-
tation ℎG𝑠

𝑣𝑖 . The global level representation captures co-occurrence
neighbor features under different relationships. The local level rep-
resentation reflects the personalized preference characteristics of
users. We utilize an MLP layer to fuse the representations of two
graph neural networks, as shown in Equation 6.

ℎ𝑣𝑖 = Relu(W3 [Dropout(ℎ
G𝑔

𝑣𝑖 ) | |ℎG𝑠
𝑣𝑖 ]) (6)

Note that the global graph is constructed from all sequences in the
training set. We use the dropout[19] operation for the global graph
representation to prevent the model from overfitting.

To capture the user’s interest in the target behavior, we introduce
the target behavior mask𝑀 = (𝑚1,𝑚2, ...,𝑚𝑖 , ...,𝑚𝑛). For each item
𝑣𝑖 , if its corresponding behavior 𝑏𝑖 is the target behavior, then𝑚𝑖 is
1, otherwise𝑚𝑖 is 0. By aggregating interests related to user’s target
behavior, interference from auxiliary behavior can be effectively
avoided.
3.3.1 Target Short-Term Interest Aggregation. The user’s last item
is used as a representation of short-term interests, even though its
behavior type may not be the target behavior. To reduce the interfer-
ence of auxiliary behaviors on short-term interests, we use the repre-
sentation of the last item as a query to aggregate items of the target
behavior type in the user’s interaction history. Specifically, given
the representation of each item in the sequence (ℎ𝑣1 ,ℎ𝑣2 ,...,ℎ𝑣𝑛 ), the
sequence representation under short-term interest is as 7.

𝑞𝑠ℎ𝑜𝑟𝑡 = ℎ𝑣𝑛

𝛼𝑖 = 𝑎𝑇
𝑠ℎ𝑜𝑟𝑡

𝜎 (W4𝑞𝑠ℎ𝑜𝑟𝑡 +W5ℎ𝑣𝑖 + 𝑏1)

ℎ𝑠ℎ𝑜𝑟𝑡𝑠 =

𝑛∑︁
𝑖=1

𝑚𝑖𝛼𝑖ℎ𝑣𝑖

(7)
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where 𝑞𝑠ℎ𝑜𝑟𝑡 is the query of short-term interest,W4,W5 ∈ R𝑑×𝑑
are projection matrices corresponding to the query and key, 𝑏1 is
the bias vector, 𝜎 (.) is the sigmoid function, 𝑎𝑠ℎ𝑜𝑟𝑡 is the attention
weight vector of short-term interest, and ℎ𝑠ℎ𝑜𝑟𝑡𝑠 is the sequence
representation aggregated by short-term interest.
3.3.2 Target Long-Term Interest Aggregation. Long-term interests
are related to all items with the target behavior type in the past.
Therefore, we use the average representation of all items with the
target behavior type in the past as a query to aggregate all items
in the user’s interaction history. Specifically, given the represen-
tation of each item in the sequence (ℎ𝑣1 ,ℎ𝑣2 ,...,ℎ𝑣𝑛 ), the sequence
representation under long-term interest is as 8.

𝑞𝑙𝑜𝑛𝑔 =
1
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(8)

Different from short-term interest, the query from long-term
interest is obtained by applying an average pooling operation on
the item representations with target behavior from a sequence,
reflecting the user’s long-term preference.
3.3.3 Interest Fusion. The contribution of items in the sequence
to prediction varies under different interests. Long-term interest
represents the user’s general preferences, such as commonly used
brands and favorite colors; short-term interest represents the user’s
current intention, such as travel preparation and birthday gifts. We
propose an MLP to aggregate long-term and short-term interests
as the ultimate interests of users. The fusion method of the two
sequence representations is as 9.

ℎ𝑠 = LeakeyReLU(W8 [ℎ𝑠ℎ𝑜𝑟𝑡𝑠 | |ℎ𝑙𝑜𝑛𝑔𝑠 ]) (9)

Where ℎ𝑠 is the ultimate interests for each user, andW8 ∈ R𝑑×2𝑑
is a projection matrice.

3.4 Predicting And Training
In the scenario of multi-behavior recommendation, due to the di-
versity of behaviors, it is necessary to customize the prediction
module to estimate the probability of interaction with the target
item under a specific behavior. Consistent with past methods[1, 2],
we use different behavior vector to distinguish interaction types
and make predictions. Specifically, for sequence 𝑠 , if the behavior
of next interaction is 𝑏, then the score of user interacting with item
𝑣𝑖 under behavior type 𝑏 is 𝑦𝑏

𝑠,𝑖
= ℎ𝑏

𝑇 (ℎ𝑠 ⊙ 𝑒𝑣𝑖 ), where ⊙ is the
element-wise product, ℎ𝑠 is the representation of the sequence, and
ℎ𝑏 represents the vector of interaction types. We adopt the cross
entropy loss on all items as 10:

𝐿𝑜𝑠𝑠 = − 1
|𝑂 |

∑︁
(𝑠,𝑖,𝑏 ) ∈𝑂
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𝑠,𝑖
)

𝑁∑
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(10)

Where 𝑂 is a training set consisting of an interaction sequence 𝑠 , a
positive item 𝑣𝑖 , and a target behavior 𝑏.

Table 1: Statistics of the datasets after preprocessing.

Dataset #Users #items Behavior Type #Interaction

ML1M 5645 2357 Exam 628,892
Like 223,305

UB 20858 30793

Page View 470,731
Cart 85,910

Favorite 28,242
Purchase 136,250

Rec15 36917 9621 Click 446,442
Purchase 233,263

Tmall 17209 16177
Page View 831,117
Favorite 240,901
Purchase 121,168

4 EXPERIMENTS
To evaluate ’s performance, we conducts experiments on several
real-world datasets by answering the following research questions:
• RQ1: How does our GHTID perform as compared to various
state-of-the-art MBSR methods with different settings?

• RQ2: How effective are the key modules (e.g. global graph con-
volution module,local graph convolution module, Interest Aggre-
gation Module) in GHTID?

• RQ3: How robust is GHTID to counteract interference from
auxiliary behaviors?

• RQ4: How do the integration of different types of behavior pat-
terns affect the prediction of target behavior?

4.1 Experiment Settings
4.1.1 Datasets. Weused four real datasets,MovieLens 1M(ML1M)1,
UserBehaviors(UB)2, Tmall3, and Rec154 to evaluate the perfor-
mance of our model. These four datasets all have different types of
behavior, as detailed in the table 1. We adopt the same data process-
ing method as [2]. First, for each behavior, we remove the duplicate
items for each user and only keep the earliest ones. Second, we
remove the items and users with less than 5 target behavior interac-
tions. Consistent with [2], we only used two type interactions (’Page
View’ and ’Purchase’) in the Tmall and Rec15 datasets. We will con-
duct an ablation experiment on the behavior types in the third part
of the experiment to verify the effectiveness of multi-behavior.
4.1.2 Compared Methods. To evaluate the performance, we com-
pare GHTID with state-of-the-art methods. These models are clas-
sified into two types, single-behavior sequential recommendation
models and multi-behavior recommendation models, depending on
whether the models model behavior types.
Single-Behavior Sequential Recommendation: For a fair com-
parison, we treat items of different behavior types as the same
behavior in the training phase and evaluate them under the target
behavior in the validation and testing phases.

1https://grouplens.org/datasets/movielens/1m
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
4https://recsys.acm.org/recsys15/challenge
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• FPMC [18]. A joint matrix decomposition and first-order Markov
approach that models user preferences as well as first-order trans-
fer information of items, respectively.

• TransRec [5]. A translation-based approach models the "third-
order relationship" between the user, the item, and the next item.

• SASRec [8]. It encodes the item sequence by the transformer
and autoregressively makes the next item prediction.

• TiSASRec [12]. An improvement work based on SASRec incor-
porates the time interval relationship between items into the
Self-Attention module.

• GCEGNN [24]. A graph neural network-based approach that
learns item representations in the local and global graphs, respec-
tively, and fuses reverse positional encoding to obtain session
representations for prediction.

Multi-Behavior Sequential Recommendation: MBSR methods
pay extra attention to the behavior sequence of items.

• TransRec++ [32]. It enhances TransRec to model item transition
relationships as different vectors based on behavior type

• DMT [4]. It divides the item sequence into behavior-specific item
subsequences based on behavior type and models each behavior-
specific subsequence separately.

• MGNN-Spred [23]. It learns sequence-level behavior depen-
dencies by constructing behavior-specific item transformation
graphs.

• M-SR [17]. It uses GGNN and GRU to encode item sequences
and behavior sequences, respectively, and note that we remove
the knowledge embedding module from the original model

• MBSTR [31]. It employs a pairwise behavior-specific relative
position encoding to improve Self-Attention. In the prediction
phase, it treats the item prediction task with multiple behavior
types as multi-task learning with the latest multi-task learning
CGC module configured.

• GPG4HSR [2]. It construct global and local graphs based on
adjacent item transitions, where the global graph learns pair-
wise behavior-specific relationships and the local graph injects
behavior context to the item representation.

4.1.3 Evaluation Protocol. We adopt the "leave one out" evaluation
strategy, as is commonly used in most Sequential Recommendation
work[8, 28]. We adopt performance evaluation metrics widely used
in Top-N recommendations, including the normalized discounted
cumulative gain (NDCG@N) and the hit ratio (HR@N). In this ex-
periment, we set N=10. Due to the inconsistent with non-sampling
methods[9, 10], we adopt a non-sampling evaluation approach, i.e.,
scoring items in the item set under the target behavior for evalua-
tion purposes.

4.1.4 Implementation Details. We implement GHTID with Pytorch
and fine-tune the hyperparameters on the validation set. For the
baseline models, we used the version provided by the authors. Fol-
lowing previous work[2], the embedding size is 64, the sequence
length is 50, the batch size is 128, the optimizer is Adam, and the
learning rate is 0.001. We set a 2-layer Transformer encoder and
single-headed attention for all Transformer-based models. For all
hyperparameters, we tuned the parameters on the validation set
according to the settings in the original paper.

4.2 Performance Comparison (RQ1)
We report a detailed performance comparison of the different meth-
ods in Table 2 and summarize the observations as follows:

GHTID outperforms all the baseline models on the four
datasets. The average improvement of 𝐻𝑅@10 and 𝑁𝐷𝐶𝐺@10
over the best baseline model on the ML-1M dataset are 13.90% and
17.90%, 23.34% and 32.68% on the UB dataset, 19.86% and 18.07% on
the Rec15 dataset, 18.11% and 21.17% on the Tmall dataset, which
proves the effectiveness of GHTID. The performance improvement
can be attributed to: 𝑖) GHTID considers heterogeneous item transi-
tions across types from global and local perspectives and can learn
item-level behavior dependencies and effectively obtain better item
representations. 𝑖𝑖) Compared with other models, GHTID aggre-
gats interest from target behavior and reduces the interference of
auxiliary behavior.

Modeling behavior sequences can help improve the perfor-
mance of single-behavior sequential recommendation mod-
els. Some multi-behavior sequential recommendation methods (e.g.
DMT) perform even weaker than single-behavior sequential rec-
ommendation methods (e.g. SASRec) due to the great differences
in the design of different models. However, the overall trend is that
multi-behavior sequential recommendation methods outperform
single-behavior sequential recommendation methods of similar ar-
chitectures. The three groups of models, TransRec and TransRec++,
SASRec and MBSTR, and GCE-GNN and GPG4HSR, have similar
underlying architectures, and the latter are all improved versions
of the former after modeling multi-behavior sequences. Comparing
the performance of these three models, we can find that the latter
has some performance improvement compared with the former.

Item-level behavior dependencymodeling approaches gen-
erally outperform sequence-level behavior dependency mod-
eling approaches. Item-level behavior dependencymodelingmeth-
ods MBSTR, GPG4HSR, and GHTID generally outperform other
multi-behavior sequential recommendation methods, especially rel-
ative to sequence-level behavior dependency modeling methods
DMT, MGNN-SPred. Sequence-level behavior dependency mod-
eling methods are sometimes inferior to single-behavior sequen-
tial recommendation methods. This performance difference can
be attributed to sequence-level behavior dependency modeling ap-
proaches ignoring the correlation between items across behavior
types.
4.3 Ablation Study (RQ2)
In this section, we consider three key components, the global graph
convolution module(GG), the local graph convolution module(LG),
and the interest aggregation module(IAM). To study the effective-
ness of each component, we propose the following variants of
GHTID.
• GHTID w/o GG: The global graph convolution module is re-
moved so that the representation of the items takes into account
only the information in the local sequence.

• GHTID w/o LG: The local graph convolution module is re-
moved so that the item representation considers only the item
co-occurrence information at the global level.

• GHTID w/o IAM: The interest aggregation module is removed,
and as an alternative, we use the last item representation of the
sequence as the representation of the sequence.
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Table 2: Overall model performance on four datasets, with the metrics of HR@N and NDCG@N (N=10). The best score and
the second best score in each row are bolded and underlined, respectively. Improvements over the best baseline method are
indicated in the last row.

Methods ML1M UB Rec15 Tmall

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

FPMC 0.1086 0.0510 0.0467 0.0249 0.3829 0.2102 0.0352 0.0191
TransRec 0.0852 0.0409 0.0589 0.0342 0.3697 0.1928 0.0374 0.0325
SASRec 0.1350 0.0651 0.0744 0.0412 0.3615 0.1889 0.0862 0.0521
TiSASRec 0.1327 0.0638 0.0736 0.0415 0.4093 0.2056 0.0746 0.0445
GCEGNN 0.1319 0.0618 0.0611 0.0328 0.4026 0.2053 0.0823 0.0487

TransRec++ 0.1088 0.0508 0.0661 0.0413 0.4064 0.2209 0.0593 0.0377
DMT 0.1158 0.0521 0.0613 0.0343 0.3942 0.2036 0.0642 0.0335

MGNN-Spred 0.1134 0.0548 0.0727 0.0386 0.4164 0.2108 0.0449 0.0236
M-SR 0.1349 0.0647 0.0784 0.0407 0.4315 0.2327 0.0811 0.0498
MBSTR 0.1431 0.0716 0.0904 0.0453 0.4239 0.2274 0.0905 0.0516

GPG4HSR 0.1460 0.0737 0.0830 0.0462 0.4198 0.2160 0.0944 0.0548

GHTID 0.1663 0.0869 0.1124 0.0613 0.5081 0.2685 0.1115 0.0664
Improv. 13.90% 17.90% 23.34% 32.68% 19.86% 18.07% 18.11% 21.17%

Table 3: Ablation study of GHTID

Methods UB Tmall

HR@10 NDCG@10 HR@10 NDCG@10

GHTID w/o GG 0.1042 0.0541 0.1003 0.0528
GHTID w/o LG 0.0917 0.0498 0.0947 0.0512
GHTID w/o IAM 0.1057 0.0569 0.1038 0.0557

GHTID 0.1124 0.0613 0.1115 0.0664

SASRec 0.0744 0.0412 0.0862 0.0521
SASRec+IAM 0.0847 0.0512 0.0922 0.0535

MBSTR 0.0904 0.0453 0.0905 0.0516
MBSTR+IAM 0.0961 0.0523 0.0967 0.0551

Table 3 reports the performance comparison of GHTID and its
three variants on UB and Tmall datasets (HR@10, NDCG@10). In
addition, IAM can be added to any sequence encoder to reduce
the interference of auxiliary behavior. We add variants based on
SASRec and MBSTR, respectively.

Comparing the predicted performance of GHTID and its three
variants, significant performance decreases occur when removing
any key component. In particular, the performance gap between
the GHTID and GHTID w/o LG variants shows the advantage of
learning heterogeneous item transitions for each user. The gap in
performance between GHTID and GHTID w/o GG indicates that
GG effectively captures item co-occurrence information from other
sequences. The performance gap between GHTID and GHTID w/o
IAM shows the superiority of the IAM in aggregating interests
from target behavior. Furthermore, the performance gap between
SASRec, MBSTR, and its variants shows that the IAM can bring per-
formance improvements to the sequence encoder, which indicates
the effectiveness of IAM.

Figure 3: Relative performance drop on dataset UB and Tmall
when the test data are corrupted by synthetic noises on aux-
iliary behavior. The x-axis is the percentage of corrupted
data from auxiliary behavior. The y-axis is the ratio of the
performance with noisy test data to the performance with
clean training data.

4.4 Robustness to Auxiliary Behavior(RQ3)
We conduct robustness experiments to analyze GHTID’s ability to
resist interference from auxiliary behaviors. Specifically, we added
noise to the auxiliary behaviors in the test data at a specific ratio.
The way noise is added to each data comes from a random one of
Mask, Crop, Reorder[27], Substitute, and Insert[15]. The proportion
of disrupted data ranges from 0 to 50 and increases in increments of
10 per cent. We evaluate the percentage decrease in performance on
NDCG@10 for the UB and Tmall datasets, as shown in the Figure 3.

We can see that compared to MBSTR, GHTID’s performance
decline is significantly slower. Moreover, the larger the noise ratio,
the more pronounced the performance gap. This indicates that
GHTID, which can adaptively extract signals related to the target
behavior from auxiliary behaviors, does help improve robustness
to auxiliary behavior.

4.5 Effects of Behavior types(RQ4)
To verify the effectiveness of multi-behavior, we conduct a data
ablation study in this section to evaluate the model performance
after incorporating different combinations of auxiliary behaviors.
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Figure 4: Effect of auxiliary behaviors.

We chose two multi-behavior datasets (number of behavior types
greater than 2), UB and Tmall. For brevity, we simplify the behav-
ior types as Page View(PV), add to Cart (Cart), Favorite(Fav), and
Purchase(Pur). We designed three types of variants. 𝑖)Only Pur:
contains only the target behavior. 𝑖𝑖)+ *(* denotes an auxiliary be-
havior): includes the target behavior and some auxiliary behavior.
𝑖𝑖𝑖)All:includes the target behavior and all auxiliary behaviors. We
evaluated our performance on two models, MBSTR and GHTID,
and the evaluation results are shown in Figure 4.

The experimental results show that adding any of the other auxil-
iary behaviors can improve the prediction performance of the target
behavior compared to the variant using only the target behavior.
The performance improvement of ’+ PV’ compared to the other
variants with only one auxiliary behavior indicates the importance
of Page View behavior for predicting Purchase behavior. The best
performance is obtained for ’All’, emphasizing the necessity of
integrating more auxiliary behaviors under the target behavior to
help with recommendations.

5 RELATEDWORK
Sequential recommendation(SR) mainly models the item tran-
sitions in a sequence to capture the current and recent user pref-
erences. Based on the number of behavior types used, we divide
the work of SR into two categories: single-behavior sequential
recommendation (SBSR) andmulti-behavior sequential rec-
ommendation (MBSR).

5.1 Single-Behavior Sequential
Recommendation

Most early works on SBSR used Markov chain to model item se-
quences and predicted the next item of the user by calculating the
transition probability matrix[6]. FPMC[18] combines matrix fac-
torization to capture user’s long-term preference and first-order
Markov chain to model sequential pattern. Since Recurrent Neural
Network (RNN) has a natural ability to model sequences, it was the
first to be applied in the field of SR[7, 11]. Convolutional Neural Net-
work (CNN) has also been explored for its potential to apply to SR,
such as Caser[20], which adopts customized filters to learn the col-
lective dependencies in the sequence. In recent years, transformer

and Graph Neural Network (GNN) have been widely applied to SR
and achieved excellent performance. SASRec[8] adopts a left-to-
right transformer for autoregressive item prediction. SR-GNN[25]
designs item transition graphs for each item sequence and performs
item and sequence representation learning with Gated Graph Neu-
ral Network (GGNN)[13]. SBSR methods only consider one type of
behavior, ignoring the correlation signals between different types
of interactions.

5.2 Multi-Behavior Sequential
Recommendation

In recent years, MBSR has received more and more attention. Be-
cause modeling multi-behavior item sequences can better reflect
users’ interests and behavior patterns and improve the accuracy of
recommendations. According to the modeling methods of behavior
sequences, we divided them into three categories.

The first category is to model the behavior sequence as auxiliary
information. These methods either directly aggregate the behavior
embeddings and item embeddings as the input of the model[33],
or separately model the item sequence and behavior sequence and
then aggregate them at the end[14, 17, 21]. The second category is
sequence-level behavior dependencymodeling. This type of method
first divides the original item sequence into different sub-sequences
according to different types of behavior, then models each sub-
sequence separately, and finally aggregates them[4, 16, 29]. This
method ignores the cross-type transitions between items because
it separates the item sequences of different behaviors.

The third type is item-level behavior dependency modeling. This
type of methods build relationships between items based on behav-
ior, and mine the item transitions within the same behavior and
across behaviors. However, the main drawback of existing methods
is the lack of exploration of heterogeneous item transitions. Some
approaches[26, 31] focus only on individual user interactions, ig-
noring global heterogeneous item transitions. Other approaches[2]
do not explicitly model heterogeneous item transitions in local
item representation learning. Different from the above works, our
proposed GHTID explores the item-level behavior dependency
modeling from global and local perspectives.

6 CONCLUSION
In this work, we propose a multi-behavior sequential recommenda-
tion framework GHTID. It addresses two major challenges in multi-
behavior sequential recommendation systems: heterogeneous item
transitions and interference from auxiliary behaviors. Firstly, we
propose a graph convolution module based on the global item-item
co-occurrence graph and a graph convolution module based on the
local item-item transition graph. They learn heterogeneous item
transition relationships at the global and local levels. In addition,
our proposed interest aggregation module aggregates signals from
the target behavior into long-term and short-term interests, effec-
tively reducing interference from auxiliary behaviors. Extensive
experiments on four public datasets validate the effectiveness of
GHTID.

In future work, wewill consider user profiling and item attributes
to expand our framework.
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